Novel xanthine oxidase inhibitor studies. Part 3. ${ }^{1}$ Convenient and general syntheses of 3-substituted $7 \boldsymbol{H}$-pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-ones as a new class of potential xanthine oxidase inhibitors

Tomohisa Nagamatsu, ${ }^{* a}$ Takayuki Fujita ${ }^{a}$ and Kazuki Endo ${ }^{b}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
${ }^{b}$ Biology Laboratory, Research and Development Division, Yamasa Syoyu Co., Choshi, Chiba 288-0056, Japan

Received (in Cambridge, UK) 22nd September 1999, Accepted 22nd October 1999

Abstract

Convenient and general syntheses of 3-substituted 7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-ones (12), a new class of potent xanthine oxidase inhibitors, involving the oxidative cyclisation of 6 -substituted 4 -alkyl-idenehydrazino- or 4-arylmethylidenehydrazino- $1 H$-pyrazolo[3,4- d]pyrimidines ($\mathbf{3}$ and $\mathbf{1 1}$) with 70% nitric acid as the key step, are reported. The hydrazones $\mathbf{3}$ and $\mathbf{1 1}$ were obtained by a versatile synthetic route $v i a$ the key intermediates, 6-chloro-4-hydrazino-1 H -pyrazolo[3,4- d]pyrimidine $\mathbf{2}$ or oxypurinol 4, starting from 2,4,6-trichloropyrimidine-5carbaldehyde $\mathbf{1}$. Their inhibitory activities against bovine milk xanthine oxidase in vitro are also described; i.e. the pyrazolotriazolopyrimidines $\mathbf{1 2}$ were several hundred times more potent than allopurinol.

Introduction

Allopurinol, a well known drug clinically used for treatment of gout and hyperuricemia resulting from uric acid, ${ }^{2-4}$ has been reported as a potential inhibitor of xanthine oxidase (XO), which catalyzes the conversion of hypoxanthine and xanthine to uric acid. ${ }^{5}$ Allopurinol is relatively non-toxic and does not appear to interfere with anabolic processes within the cell, as judged by its lack of inhibition of the growth of bacteria or tumors. ${ }^{6}$ However, some allopurinol toxicities ${ }^{7}$ and a lifethreatening toxicity syndrome have been reported after its use. ${ }^{8}$ Although XO inhibitory activities have recently been discovered in some newly synthesized compounds and previously known compounds, ${ }^{9-15}$ no clinically effective XO inhibitors for the treatment of hyperuricemia have been developed since allopurinol was introduced for clinical use in 1963. ${ }^{2,6}$ We have recently discovered that 6-alkylidenehydrazino- or 6-aryl-methylidenehydrazino-7 H -purines (I) and the angular type purine analogues, $9 H-1,2,4$-triazolo[3,4-i]purines (II), have exhibited more potent bovine milk XO inhibitory activities than that of allopurinol. ${ }^{1,16,17}$
In our recent communication, ${ }^{18}$ we reported the facile and general syntheses of 3 - and/or 5 -substituted 7 H -pyrazolo-[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidines (III) as a new class of potential xanthine oxidase inhibitors. Herein we report full details of the versatile and general syntheses of the 3substituted 7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin$5(6 \mathrm{H})$-ones (III), involving the oxidative cyclisation of 6 -substituted 4-alkylidenehydrazino- or 4-arylmethylidene-hydrazino- $1 H$-pyrazolo[3,4- d]pyrimidines as the key step. Furthermore, we also report here their inhibitory activities against bovine milk xanthine oxidase in comparison with allopurinol in vitro.

Results and discussion

In the preceding paper, ${ }^{1}$ we have clarified that $9 H-1,2,4-$ triazolo[3,4-i]purines (II), especially the 5 -oxo or 5 -thioxo derivatives, showed more potent bovine milk XO inhibitory

allopurinol

oxypurinol

hypoxanthine

xanthine

I

II

III
activities than allopurinol. Therefore, in this paper we tried to prepare 3 -substituted $7 H$-pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]-pyrimidin- $5(6 \mathrm{H})$-ones (III), which are analogous to the triazolopurines (II), as another new class of potential XO inhibitors. Few methods for synthesis of the pyrazolotriazolopyrimidines (III) have been reported in the journal ${ }^{19,20}$ or patent ${ }^{21}$ literature and several derivatives have been synthesised. However, none of the 5 -substituted derivatives has been prepared up to now.

In the first place we tried to synthesise the key intermediate, 4-hydrazino-1 H-pyrazolo[3,4- d]pyrimidin- $6(7 H)$-one 6 derived
from barbituric acid. The requisite starting material, 2,4,6-trichloropyrimidine-5-carbaldehyde 1, was prepared according to a literature method. ${ }^{22}$ Treatment of $\mathbf{1}$ with anhydrous hydrazine (4 equiv.) in 2-methoxyethanol at $0^{\circ} \mathrm{C}$ afforded 6 -chloro-4-hydrazino-1 H -pyrazolo[3,4- d]pyrimidine 2 in 79% yield (Scheme 1). Subsequent reaction of compound 2 with

Scheme 1 Reagents and conditions: i, anh. $\mathrm{NH}_{2} \mathrm{NH}_{2}$, 2-methoxyethanol, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; ii, RCHO, DMF, r.t., 10 h ; iii, conc. HCl reflux, 1 h ; iv, $10 \% \mathrm{HCl}$, reflux, 3 h ; v, $\mathrm{P}_{2} \mathrm{~S}_{5}$, pyridine, reflux, 2 h ; vi, 50% ethanolic $\mathrm{NH}_{2} \mathrm{NH}_{2}$, reflux, 10 min ; vii, anh. $\mathrm{NH}_{2} \mathrm{NH}_{2}$, 2-methoxyethanol, $100^{\circ} \mathrm{C}, 5 \mathrm{~h}$; viii, 80% aq. $\mathrm{NH}_{2} \mathrm{NH}_{2}, 80-90^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ix, RCHO, DMF, r.t., 10 h ; x, urea, 2-ethoxyethanol, reflux, 5 h ; xi, urea, 2-ethoxyethanol, reflux, 10 h ; xii, urea, 2-ethoxyethanol, 36 h .
appropriate aldehydes (1.2 equiv.) in dimethylfumamide (DMF) at room temperature gave the corresponding hydrazones $\mathbf{3 a - g}$ in $60-93 \%$ yields as shown in Tables 1 and 2. Further, heating compound 2 in concentrated hydrochloric acid (50 parts) under reflux for 1 hour gave oxypurinol 4 (58% yield), which was confirmed by direct comparison with an authentic sample. ${ }^{23}$ The oxypurinol 4 was also obtained in a similar yield by heating the hydrazone $\mathbf{3 b}(\mathrm{R}=\mathrm{Ph})$ in 10% hydrochloric acid (100 parts) for 3 hours. Thiation of oxypurinol $\mathbf{4}$ by phosphorous pentasulfide gave the 6-oxo-4-thioxo derivative 5 (76% yield) following a literature procedure ${ }^{23}$ and the reaction of 5 with excess 50% ethanolic hydrazine under reflux yielded the desired intermediate, 4-hydrazino-1 H -pyrazolo[3,4- d]pyrim-idin- $6(7 H)$-one 6 , in 71% yield.

On the other hand, heating compound 1 with excess anhydrous hydrazine at $100^{\circ} \mathrm{C}$ or heating compound 2 with
excess 80% hydrazine hydrate at $80-90^{\circ} \mathrm{C}$ afforded the 4,6 dihydrazino derivative 7 in good yields. Subsequent reaction of compound 7 with appropriate aldehydes (3.0 equiv.) in DMF at room temperature gave the corresponding hydrazones $\mathbf{8 b}-\mathbf{d}, \mathbf{f}$ in excellent yields as shown in Tables 1 and 2. Next, in an attempt to convert the 6-chloro-4-hydrazino compound 2 to the 6 -oxo-4-hydrazino derivative $\mathbf{6}$, compound $\mathbf{2}$ was reacted with urea (4.0 equiv.) in 2-ethoxyethanol under reflux for 5 hours. However, owing to the stability of the chloro group towards hydroxy substitution by urea or alkali, the intended compound 6 was not obtained, but 4-carbamoylhydrazino-6-chloro- 1 H -pyrazolo[3,4- d] pyrimidine 9 , which resulted from carbamoylation of the hydrazino group at the 4-position, was formed in 60% yield. Heating under reflux the product 9 with urea (3.0 equiv.) in 2-ethoxyethanol afforded the desired tricyclic compound, 3-amino-7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrim-idin- $5(6 H)$-one 10, in 18% yield. This compound $10(29 \%$ yield) was also obtained by prolonged heating of $\mathbf{2}$ with urea under the same reaction conditions as mentioned above.
All new compounds 2, 3 and 6-10 exhibited satisfactory elemental combustion analyses except for $\mathbf{2}$ and $\mathbf{6}$ and FAB-MS, IR and ${ }^{1} \mathrm{H}$ NMR spectral data consistent with the structures. In particular, the structure of the product $\mathbf{1 0}$ was confirmed by the presence of a two-proton broad singlet signal at $\delta 7.94$ and oneproton signals at $\delta 12.27$ and 13.10 in the ${ }^{1} \mathrm{H}$ NMR spectrum attributable to the amino and imino groups and by the presence of peaks at $3370\left(v_{\text {as }} \mathrm{NH}\right), 3260\left(v_{\mathrm{s}} \mathrm{NH}\right), 1720(v \mathrm{C}=\mathrm{O})$ and 1685 $(\delta \mathrm{NH}) \mathrm{cm}^{-1}$ in the IR spectrum attributable to amino and carbonyl groups. It was clarified that the substitution reaction of the chloro group by hydroxy was difficult in the pyrazolopyrimidine ring 2 , while in the pyrazolotriazolopyrimidine ring 10 it was easy.

The 4-hydrazino-1 H-pyrazolo[3,4- d]pyrimidin-6(7H)-one 6 as noted above was a versatile intermediate for the preparation of the 7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidine ring system. Thus the hydrazinopyrazolopyrimidine $\mathbf{6}$ could be converted to the hydrazones 11b, e-r ($63-95 \%$ yields) by reaction with an appropriate aldehyde (1.5 equiv.) in DMF at room temperature (Scheme 2 and Tables 3 and 4). The hydrazones 11b, e-p, \mathbf{r} were subsequently cyclised to the corresponding 3substituted 7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin$5(6 \mathrm{H})$-ones 12b, e-p, r by heating with 70% nitric acid (1.2 equiv.) at $100^{\circ} \mathrm{C}$ in $60-91 \%$ yields (Method A) (Tables 5 and 6). In the case of compound $\mathbf{1 1 q}$ possessing a 4-hydroxybenzylidenehydrazino group as the substituent at the 4-position, the 3-(4-hydroxy-3-nitrophenyl) derivative 12s was obtained by oxidative cyclisation-nitration in 52% yield. Oxidative cyclisation was also accomplished by heating compounds $11 \mathbf{e}, \mathbf{g}, \mathbf{h}, \mathbf{k}$, $\mathbf{m}-\mathbf{o}, \mathbf{q}$ with diethyl azodicarboxylate (DEAD) (3-7 equiv.) under reflux in $50-67 \%$ yields (Method B). Moreover, the 3-alkyl derivatives 12a-d were synthesised by treatment of compound $\mathbf{6}$ with an appropriate trialkyl orthoester (5.0 equiv.) in trifluoroacetic acid at room temperature (Method C) or heating compound 6 with trialkyl orthoesters (3.0 equiv.) in DMF at $100^{\circ} \mathrm{C}$ (Method D) in $54-83 \%$ yields. In the light of this multiple step synthesis, a one-pot oxidative cyclisation starting from the 6 -chloro-4-hydrazones $\mathbf{3 a - g}$ would be attractive. Indeed, heating the hydrazones $\mathbf{3 a - g}$ with 70% nitric acid (5.0 equiv.) in DMF at $100^{\circ} \mathrm{C}$ afforded the desired 3-substituted 7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-ones
$\mathbf{1 2 e}, \mathbf{g}, \mathbf{h}, \mathbf{k}, \mathbf{m}, \mathbf{n}, \mathbf{r}$ accompanied by hydrolytic dechlorination in $60-85 \%$ yields (Method E).
All new compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ exhibited satisfactory elemental combustion analyses and FAB MS, IR and ${ }^{1} \mathrm{H}$ NMR spectral data consistent with the structures as indicated in Tables 3-6.

Xanthine oxidase inhibitory results

The novel pyrazolopyrimidines $\mathbf{2 , 3}, \mathbf{6}, \mathbf{8}$ and $\mathbf{1 1}$ and pyrazolo-

Table 1 Preparative, physical and analytical data for the compounds $\mathbf{3 a -}$, $\mathbf{8 b}-\mathbf{d}, \mathbf{f}$

| | | | | Found (\%) (Required) |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |

${ }^{a}$ All compounds $\mathbf{3}$ and $\mathbf{8}$ were obtained as colourless or pale yellow powdery crystals except for $\mathbf{3 g}$ (yellow). ${ }^{b}$ Solvent systems: (A) AcOEt- n-hexane (4:3 v/v), (B) AcOEt-EtOH (9:1 v/v).

Table 21 R and ${ }^{1} \mathrm{H}$ NMR spectroscopic data for the compounds $\mathbf{3 a - g}, \mathbf{8 b}-\mathbf{d}, \mathbf{f}$

Compound	$v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; \mathrm{Me}_{4} \mathrm{Si}\right]$
3a	3180, 3100 (NH)	$0.86\left(3 \mathrm{H}, J 6.8, \mathrm{CHCH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{3}\right), 1.31\left(10 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHCH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{3}\right), 2.15-2.60(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{3}\right), 7.61\left(1 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CHCH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{3}\right), 8.18(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 12.00(1 \mathrm{H}, \mathrm{br}$, 4-NH), 12.90 ($1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})$
3b	3190, 3080 (NH)	$\begin{aligned} & 7.40-7.60(3 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}-m, p \mathrm{H}), 7.70-7.95(2 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}-o \mathrm{H}), 8.28(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}) \text {, } \\ & 12.44(1 \mathrm{H}, \mathrm{~s}, 4-\mathrm{NH}), 13.75(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 1-\mathrm{NH}) \end{aligned}$
3c	3200, 3100 (NH)	$\begin{aligned} & 7.32\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 9.1, \mathrm{Ar}-m \mathrm{H}\right), 7.90\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 5.9, \mathrm{Ar}-o \mathrm{H}\right), 8.27(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), \\ & 8.40(1 \mathrm{H}, \mathrm{~s}, \mathrm{CH}-\mathrm{Ar}), 12.45(1 \mathrm{H}, \mathrm{~s}, 4-\mathrm{NH}), 13.70(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}) \end{aligned}$
$3 d^{a}$	3180, 3080 (NH)	$\begin{aligned} & 7.55(2 \mathrm{H}, \mathrm{~d}, J 8.6, \operatorname{Ar}-m \mathrm{H}), 7.85(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-\mathrm{oH}), 8.26(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}) \text {, } \\ & 12.54(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 13.70(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}) \end{aligned}$
3 e	3190, 3080 (NH)	$2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.30(2 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{Ar}-m \mathrm{H}), 7.70(2 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{Ar}-o \mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.38$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar}$), $12.40(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 13.50(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})$
3f	3210, 3100 (NH)	$3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.06(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 7.78(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}-\mathrm{oH}), 8.24(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.39$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar}$), $12.35(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{NH}), 13.60(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})$
$3 \mathrm{~g}^{a}$	3190, 3090 (NH)	$\begin{aligned} & 8.09(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-o \mathrm{H}), 8.32(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.46(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}) \text {, } \\ & 12.78(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 4-\mathrm{NH}), 13.90(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}) \end{aligned}$
8b	3240, 3180, 3140 (NH)	$\begin{aligned} & 7.26-7.83(10 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}-\mathrm{H} \times 2), 8.19(1 \mathrm{H}, \mathrm{~s}, 6-\mathrm{CH}-\mathrm{Ar}), 8.24(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{~s}, 4-\mathrm{CH}-\mathrm{Ar}) \text {, } \\ & 10.81(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}), 11.78(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 13.07(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}) \end{aligned}$
8c	3250, 3170, 3130 (NH)	$\begin{aligned} & 7.27\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 9.1,6-\mathrm{Ar}-m \mathrm{H}\right), 7.32\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 9.1,4-\mathrm{Ar}-\mathrm{mH}\right), 7.74(2 \mathrm{H}, \mathrm{dd}, \\ & \left.J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 5.9,6-\mathrm{Ar}-o \mathrm{H}\right), 7.87\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 5.8,4-\mathrm{Ar}-o \mathrm{H}\right), 8.20(1 \mathrm{H}, \mathrm{~s}, 6-\mathrm{CH}-\mathrm{Ar}), 8.26 \\ & (1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.33(1 \mathrm{H}, \mathrm{~s}, 4-\mathrm{C} H-\mathrm{Ar}), 10.93(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}), 11.80(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 12.90(1 \mathrm{H}, \mathrm{br}, \\ & 1-\mathrm{NH}) \end{aligned}$
8d	3250, 3180, 3120 (NH)	$7.45(2 \mathrm{H}, \mathrm{d}, J 8.4,6-\mathrm{Ar}-m \mathrm{H}), 7.51(2 \mathrm{H}, \mathrm{d}, J 8.5,4-\mathrm{Ar}-m \mathrm{H}), 7.74(2 \mathrm{H}, \mathrm{d}, J 8.4,6-\mathrm{Ar}-o \mathrm{H}), 7.80(2 \mathrm{H}$, d, $J 8.5,4-\mathrm{Ar}-o \mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}-\mathrm{Ar}), 8.28(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}-\mathrm{Ar}), 10.95(1 \mathrm{H}, \mathrm{br}$, $6-\mathrm{NH}), 11.80(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 13.00(1 \mathrm{H}$, br, 1-NH)
8f	3250, 3170, 3140 (NH)	$3.75\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 6.95(2 \mathrm{H}, \mathrm{d}, J 8.5,6-\mathrm{Ar}-m \mathrm{H}), 7.06(2 \mathrm{H}, \mathrm{d}, J 8.8,4-\mathrm{Ar}-$ $m \mathrm{H}), 7.60(2 \mathrm{H}, \mathrm{d}, J 8.5,6-\mathrm{Ar}-o \mathrm{H}), 7.77(2 \mathrm{H}, \mathrm{d}, J 8.8,4-\mathrm{Ar}-\mathrm{H}), 8.12(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}-\mathrm{Ar}), 8.20(1 \mathrm{H}$, s, 3-H), $8.24(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{C} H-\mathrm{Ar}), 10.59(1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{NH}), 11.66(1 \mathrm{H}$, br, $4-\mathrm{NH}), 12.83(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})$

triazolopyrimidines $\mathbf{1 2}$ prepared in this study were tested as inhibitors of bovine milk xanthine oxidase in a similar assay method ${ }^{14}$ as previously reported. The inhibition (\%) and IC_{50} ($\mu \mathrm{M})$ values of the compounds tested against bovine milk xanthine oxidase are shown in Table 7. Thus the introduction of both an aryl aldehyde hydrazone at the 4-position and an oxo group at the 6 -position of the $1 H$-pyrazolo[3,4- d]pyrimidine ring led to markedly better activities in xanthine oxidase inhibition, these compounds being two orders of magnitude more active than allopurinol: IC_{50} values for $\mathbf{1 1 g - k}$ and $\mathbf{1 1 m} \mathbf{q}$ were ca. $0.08-0.4 \mu \mathrm{M}$, whereas that for allopurinol was $24.3 \mu \mathrm{M}$. Most
of the pyrazolotriazolopyrimidines 12a-s showed potent inhibitory activities, being two or three orders of magnitude more active than allopurinol. Of these compounds, 12k ($\mathrm{R}=$ $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$) was the most active; it showed a 760 -fold $\left(\mathrm{IC}_{50}=0.032 \mu \mathrm{M}\right)$ more potent bovine milk XO inhibitory activity than that of allopurinol.

Conclusion

Thus, this simple and general methodology provided a facile and convenient route to the preparation of 3 -substituted 7 H -

6

12a-r

```
11,12 a: R = H
```

11,12 a: R = H
b: R=Me
b: R=Me
c: R = Et
c: R = Et
d: R=n-Bu
d: R=n-Bu
e: R=n-C77 H
e: R=n-C77 H
f: R=CH2}=\textrm{CH}-(\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{)}{8}{
f: R=CH2}=\textrm{CH}-(\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{)}{8}{
g: R=Ph
g: R=Ph
h: R=4-F-C}\mp@subsup{C}{6}{}\mp@subsup{H}{4}{
h: R=4-F-C}\mp@subsup{C}{6}{}\mp@subsup{H}{4}{
i: R=2-Cl-C6}\mp@subsup{\textrm{H}}{4}{
i: R=2-Cl-C6}\mp@subsup{\textrm{H}}{4}{
j: R=3-Cl-C6}\mp@subsup{\textrm{H}}{4}{
j: R=3-Cl-C6}\mp@subsup{\textrm{H}}{4}{
k: R=4-Cl-C6}\mp@subsup{\textrm{H}}{4}{
k: R=4-Cl-C6}\mp@subsup{\textrm{H}}{4}{
I: R=4-Br-C6}\mp@subsup{\textrm{H}}{4}{
I: R=4-Br-C6}\mp@subsup{\textrm{H}}{4}{
m:R=4-Me-C6}\mp@subsup{\textrm{H}}{4}{
m:R=4-Me-C6}\mp@subsup{\textrm{H}}{4}{
n: R=4-MeO-C6}\mp@subsup{\textrm{H}}{4}{
n: R=4-MeO-C6}\mp@subsup{\textrm{H}}{4}{
o: R=3,4-OCH2O-C6}\mp@subsup{\textrm{C}}{3}{
o: R=3,4-OCH2O-C6}\mp@subsup{\textrm{C}}{3}{
p: R=4-HOOC-C6}\mp@subsup{\textrm{H}}{4}{
p: R=4-HOOC-C6}\mp@subsup{\textrm{H}}{4}{
q: R=4-HO-C6}\mp@subsup{\textrm{H}}{4}{
q: R=4-HO-C6}\mp@subsup{\textrm{H}}{4}{
r:R=4-O2N-C6
r:R=4-O2N-C6
h: $\mathrm{R}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{R}=2-\mathrm{Cl}^{-} \mathrm{C}_{6} \mathrm{H}_{4}$
j: $\mathrm{R}=3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
$R=4-C 1-C_{6} \mathrm{H}_{4}$
I: $\mathrm{R}=4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{R}=4-\mathrm{Me}_{6} \mathrm{C}_{6}$
n: $\mathrm{R}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$
p: $\mathrm{R}=4-\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{r}: \mathrm{R}=4-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$

```


119

Scheme 2 Reagents and conditions: i, RCHO, DMF, r.t. or \(40^{\circ} \mathrm{C}, 10 \mathrm{~h}\); ii, \(70 \% \mathrm{HNO}_{3}\), DMF, \(100^{\circ} \mathrm{C}, 1-9 \mathrm{~h}\); iii, DEAD, DMF, reflux, \(5-9 \mathrm{~h}\); iv, \(\mathrm{RC}(\mathrm{OEt})_{3}\), TFA, r.t., \(1 \mathrm{~h} ; \mathrm{v}, \mathrm{RC}(\mathrm{OEt})_{3}\) or \(\mathrm{RC}(\mathrm{OMe})_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h}\)
pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-ones (12), which were obtained by oxidative cyclisation of the corresponding 4 -aldehyde hydrazones of 1 H -pyrazolo[3,4-d]pyrimidines ( \(\mathbf{3}\) and 11) with \(70 \%\) nitric acid as the key step, as a new class of potential xanthine oxidase inhibitors. Their inhibitory activities against bovine milk xanthine oxidase in vitro were investigated, and some 4-arylmethylidenehydrazino\(1 H\)-pyrazolo[3,4-d]pyrimidin-6(7H)-ones (11) exhibited from several times to several hundred times more potent activities than allopurinol. In addition, the tricyclic compounds, 3-aryl7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-ones (12) showed potent inhibitory activities, being \(c a\). three orders of magnitude more active than allopurinol. They did not show any appreciable inhibition against the proliferation of T-cell acute lymphoblastic leukemia (CCRF-HSB-2) however. \(\dagger\) Biological testing of the compounds in vivo is now ongoing and the results will be reported later.

\section*{Experimental}

\section*{General}

Mps were obtained on a Yanagimoto micro melting point
\(\dagger\) We have found that some derivatives exhibited poor inhibitory activities against the proliferation of T-cell acute lymphoblastic leukemia (CCRF-HSB-2): the \(\mathrm{IC}_{50}\) for \(\mathbf{1 1 j}, 11 \mu \mathrm{~m}\); for \(\mathbf{1 1 0}, 45 \mu \mathrm{~m}\); for \(\mathbf{1 2 i}, 25 \mu \mathrm{~m}\); for \(\mathbf{1 2 j}, 14 \mu \mathrm{~m}\); for \(\mathbf{1 2 k}, 35 \mu \mathrm{M}\); for \(\mathbf{1 2 1}, 23 \mu \mathrm{~m}\); for \(\mathbf{1 2 n}, 36 \mu \mathrm{~m}\); for \(\mathbf{1 2 q}, 34\) \(\mu \mathrm{m}\); for \(\mathbf{1 2 r}, 36 \mu \mathrm{~m}\); for \(\mathbf{1 2 s}, 35 \mu \mathrm{~m}\) and for arabinosylcytosine, \(0.061 \mu \mathrm{~m}\).
apparatus and were uncorrected. Microanalyses were measured by a Yanaco CHN Corder MT-5 apparatus. Mass spectra were recorded at 70 eV ionizing voltage with FAB ionization using a VG-70SE spectrometer and 3-nitrobenzyl alcohol or glycerol as a matrix. IR spectra were recorded using a JASCO FT/IR-200 spectrophotometer as Nujol mulls. \({ }^{1} \mathrm{H}\) NMR spectra were obtained using Hitachi FT-NMR R-1500 ( 60 MHz ) and Varian VXR 200 MHz spectrometers. In all cases, chemical shifts are in ppm relative to \(\mathrm{SiMe}_{4}\) as internal standard and \(J\) values are given in Hz . All reagents were of commercial quality from freshly opened containers and were used without further purification. Organic solvents were dried by standard methods and distilled before use. Reaction progress was monitored by analytical thin layer chromatography (TLC) on pre-coated glass plates (silica gel 70 FM Plate-Wako) using the following solvent systems: (A) AcOEt-EtOH (4:1 v/v), (B) EtOH, (C) MeOH and others cited in the Tables. The products were visualized by UV light. Column chromatography was run on Daisogel IR-60 (63/210 \(\mu \mathrm{m}\), Daiso Co.). The reaction temperatures are indicated as the temperature of oil bath.

\section*{6-Chloro-4-hydrazino-1 \(\mathbf{H}\)-pyrazolo[3,4- \(\boldsymbol{d}\) ]pyrimidine 2}

To a stirring solution of 2,4,6-trichloropyrimidine-5-carbaldehyde \(1^{22}(3.0 \mathrm{~g}, 14.2 \mathrm{mmol})\) in 2-methoxyethanol \(\left(20 \mathrm{~cm}^{3}\right)\) at \(0{ }^{\circ} \mathrm{C}\) was added a solution of anhydrous hydrazine \((1.82 \mathrm{~g}, 56.8\) mmol ) diluted with 2-methoxyethanol ( \(18 \mathrm{~cm}^{3}\) ) in limited amounts for 30 min . After the reaction was complete, the precipitated crystals were collected by filtration and washed with water and EtOH to afford the pyrazolopyrimidine 2 \((2.06 \mathrm{~g}, 79 \%)\) as pale yellow powdery crystals, \(\mathrm{mp}>300^{\circ} \mathrm{C} ; R_{\mathrm{f}}\) (A) \(0.64 ; v_{\max } / \mathrm{cm}^{-1} 3350\) and \(3260\left(\mathrm{NH}_{2}\right), 3160\) and 3100 \((\mathrm{NH})\) and \(\delta_{\text {max }} / \mathrm{cm}^{-1} 1660\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 4.20\) \(\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 8.50(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 9.45(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH})\) and \(13.40(1 \mathrm{H}\), br, 1-NH); m/z (FAB, 3-nitrobenzyl alcohol matrix) \(185\left(\mathrm{MH}^{+}\right)\)and \(187\left(\mathrm{MH}^{+}+2\right)\). The product 2 was obtained as a single compound and was used for the following reactions without further purification because it was difficult to purify since it was insoluble in usual solvents.

\section*{4-Alkylidenehydrazino- and 4-arylmethylidenehydrazino-6-chloro-1H-pyrazolo[3,4-d ]pyrimidines 3a-g; General procedure}

A mixture of the hydrazinopyrazolopyrimidine \(2(1.0 \mathrm{~g}, 5.42\) mmol ) and an appropriate alkyl aldehyde or aryl aldehyde (6.50 mmol ) in DMF ( \(50 \mathrm{~cm}^{3}\) ) was stirred at room temperature for 10 hours. After the reaction was complete, the solution was evaporated under reduced pressure and the residue was triturated with EtOH or AcOEt to give crystals, which were collected by filtration and recrystallized from an appropriate solvent to afford the corresponding hydrazones \(\mathbf{3 a - g}\) as shown in Tables 1 and 2.

\section*{1H-Pyrazolo[3,4-d \(]\) pyrimidine-4,6(5H,7H)-dione 4 (oxypurinol)}
(1) A mixture of the hydrazino derivative \(2(0.20 \mathrm{~g}, 1.08 \mathrm{mmol})\) with concentrated hydrochloric acid \(\left(10 \mathrm{~cm}^{3}\right)\) was heated under reflux for 1 hour. After the reaction was complete, the solution was treated with activated charcoal and evaporated under reduced pressure; the residue was recrystallized from water to afford oxypurinol \(\left[95 \mathrm{mg}, 58 \% ; \mathrm{mp}>300^{\circ} \mathrm{C} ; R_{\mathrm{f}}(\mathrm{A}) 0.48 ; v_{\max } /\right.\) \(\mathrm{cm}^{-1} 3180,3150\) and \(3120(\mathrm{NH})\) and \(1720(\mathrm{C}=\mathrm{O})\) ], which was identical with an authentic sample. \({ }^{23}\)
(2) The hydrazone \(\mathbf{3 b}(0.50 \mathrm{~g}, 1.83 \mathrm{mmol})\) in \(10 \%\) aqueous \(\mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)\) was heated under reflux for 3 hours. After the reaction was complete, the solution was treated with activated charcoal and cooled to afford a deposit, which was collected by filtration. The filtrate was evaporated under reduced pressure and the residue was recrystallized from water to get the second

Table 3 Preparative, physical and analytical data for the compounds 11b, e-r
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound (Formula)} & \multirow[b]{2}{*}{Reaction temp/ \({ }^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Yield
(\%)} & \multirow[b]{2}{*}{\(\mathrm{Mp} /{ }^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Recrystn. solvent \({ }^{a}\) \\
( \(R_{\mathrm{f}}\), solvent system \({ }^{b}\) )
\end{tabular}} & \multicolumn{3}{|l|}{Found (\%) (Required)} & \multirow[b]{2}{*}{\(m / z \mathrm{MH}^{+}\)} \\
\hline & & & & & C & H & N & \\
\hline 11b & r.t. & 89 & >300 & EtOH-DMF & 43.4 & 4.2 & 43.65 & 193 \\
\hline \(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}\) & & & & (0.47, A) & (43.75) & (4.2) & (43.7) & \\
\hline 11e & r.t. & 80 & >300 & EtOH-DMF & 55.8 & 7.2 & 30.3 & 277 \\
\hline \(\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.65, A) & (55.8) & (7.35) & (30.0) & \\
\hline 11f & r.t. & 63 & >300 & EtOH-DMF & 60.3 & 7.4 & 26.3 & 317 \\
\hline \(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}\) & & & & (0.47, B) & (60.7) & (7.65) & (26.6) & \\
\hline 11g & r.t. & 85 & >300 & water-DMF & 55.8 & 4.1 & 32.8 & 255 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.60, A) & (55.9) & (4.1) & (32.6) & \\
\hline 11h & r.t. & 74 & >300 & water-DMF & 52.2 & 3.6 & 30.5 & 273 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{FN}_{6} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.64, A) & (52.1) & (3.5) & (30.4) & \\
\hline 11i & 40 & 76 & >300 & EtOH-DMF & 49.5 & 3.5 & 28.7 & 289/291 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{6} \mathrm{O}\) & & & & (0.64, A) & (49.9) & (3.1) & (29.1) & \\
\hline 11j & 40 & 95 & >300 & EtOH-DMF & 49.3 & 3.4 & 28.9 & 289/291 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & \((0.65, \mathrm{~A})\) & (49.3) & (3.2) & (28.75) & \\
\hline 11k & r.t. & 95 & >300 & water-DMF & 49.2 & 3.4 & 28.7 & 289/291 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.63, A) & (49.3) & (3.2) & (28.75) & \\
\hline 111 & r.t. & 83 & >300 & EtOH-DMF & 43.3 & 3.1 & 24.9 & 333/335 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrN}_{6} \mathrm{O}\) & & & & (0.65, A) & (43.3) & (2.7) & (25.2) & \\
\hline 11m & r.t. & 93 & >300 & DMF & 57.4 & 4.5 & 31.1 & 269 \\
\hline \(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.67, A) & (57.4) & (4.6) & (30.9) & \\
\hline 11n & r.t. & 87 & >300 & water-DMF & 54.4 & 4.3 & 29.2 & 285 \\
\hline \(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & (0.62, A) & (54.2) & (4.3) & (29.2) & \\
\hline 110 & 40 & 85 & >300 & water-DMF & 52.1 & 3.6 & 27.7 & 299 \\
\hline \(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3}\) & & & & (0.67, A) & (52.35) & (3.4) & (28.2) & \\
\hline 11p & 40 & 80 & >300 & water-DMF & 52.6 & 3.4 & 28.2 & 299 \\
\hline \(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3}\) & & & & (0.64, C) & (52.35) & (3.4) & (28.2) & \\
\hline 11q & 40 & 85 & >300 & EtOH-DMF & 53.2 & 4.0 & 30.7 & 271 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}\) & & & & (0.64, A) & (53.3) & (3.7) & (31.1) & \\
\hline 11r & r.t. & 88 & >300 & EtOH-DMF & 45.45 & 3.5 & 30.8 & 300 \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\) & & & & \((0.60, \mathrm{~A})\) & (45.4) & (3.5) & (30.9) & \\
\hline
\end{tabular}
\({ }^{a}\) All compounds \(\mathbf{1 1}\) were obtained as colourless powdery crystals except for \(\mathbf{1 1 m}, \mathbf{r}\) (pale yellow). \({ }^{b}\) Solvent systems: (A) AcOEt-EtOH ( \(4: 1 \mathrm{v} / \mathrm{v}\) ), (B) AcOEt-EtOH (9:1 v/v), (C) AcOEt- \(n\)-hexane-AcOH ( \(8: 4: 1 \mathrm{v} / \mathrm{v}\) ).
crop. The product was identical with oxypurinol ( 150 mg , \(54 \%\) ).

\section*{4-Hydrazino-1 H -pyrazolo[3,4-d]pyrimidin-6(7H)-one 6}

To a mixture of hydrazine monohydrate ( \(5.0 \mathrm{~g}, 99.9 \mathrm{mmol}\) ) and ethanol \(\left(5 \mathrm{~cm}^{3}\right)\) was added 4,5 -dihydro-4-thioxo- 1 H -pyrazolo-[3,4- \(d\) ]pyrimidin- \(6(7 H)\)-one \(5^{23}(1.0 \mathrm{~g}, 5.95 \mathrm{mmol})\) and the mixture was heated under reflux for 10 min . After the reaction was complete, the precipitated crystals were collected by filtration and washed with water and EtOH to afford the hydrazino derivative \(6(0.70 \mathrm{~g}, 71 \%)\) as colourless powdery crystals, \(\mathrm{mp}>300^{\circ} \mathrm{C} ; R_{\mathrm{f}}\) (B) \(0.28 ; v_{\text {max }} / \mathrm{cm}^{-1} 3360\) and \(3310\left(\mathrm{NH}_{2}\right)\), 3200,3150 and \(3100(\mathrm{NH}), 1710(\mathrm{C}=\mathrm{O})\) and \(\delta_{\max } / \mathrm{cm}^{-1} 1670\) \(\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right] 8.72(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}\), 3-nitrobenzyl alcohol matrix) \(167\left(\mathrm{MH}^{+}\right)\). The product 6 was obtained as a single compound and was used for the following reactions without further purification because it was difficult to purify since it was insoluble in usual solvents.

\section*{4,6-Dihydrazino-1 H -pyrazolo[3,4- \(d\) ]pyrimidine 7}
(1) To a stirring solution of 2,4,6-trichloropyrimidine-5-carbaldehyde \(\mathbf{1}^{22}(3.0 \mathrm{~g}, 14.2 \mathrm{mmol})\) in 2-methoxyethanol \(\left(20 \mathrm{~cm}^{3}\right)\) at \(0^{\circ} \mathrm{C}\) was added anhydrous hydrazine \((9.1 \mathrm{~g}, 283.9 \mathrm{mmol})\) dropwise. Then, the stirred mixture was heated at \(100^{\circ} \mathrm{C}\) for 5 hours. After the reaction was complete, the precipitated crystals were collected by filtration, washed with water and EtOH and recrystallized from water to afford the dihydrazino derivative \(7(1.94 \mathrm{~g}, 76 \%)\) as colourless powdery crystals, \(\mathrm{mp}>300^{\circ} \mathrm{C}\) (Found: C, 33.1; H, 4.55; N, 61.5. \(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{8} \cdot 1 / 5\) \(\mathrm{H}_{2} \mathrm{O}\) requires C, \(\left.32.7 ; \mathrm{H}, 4.6 ; \mathrm{N}, 61.0 \%\right) ; R_{\mathrm{f}}(\mathrm{C}) 0.20 ; v_{\max } /\) \(\mathrm{cm}^{-1} 3335,3270\) and \(3230\left(\mathrm{NH}_{2}\right), 3180,3120\) and \(3110(\mathrm{NH})\) and \(\delta_{\text {max }} / \mathrm{cm}^{-1} 1650\) and \(1640\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right]\)
8.81 (1H, s, 3-H); m/z (FAB, 3-nitrobenzyl alcohol matrix) \(181\left(\mathrm{MH}^{+}\right)\).
(2) To a stirring solution of \(80 \%\) aqueous hydrazine hydrate ( \(20 \mathrm{~cm}^{3}\), 320 mmol ) was added 6 -chloro-4-hydrazino- 1 H pyrazolo[ \(3,4-d\) ]pyrimidine \(2(2.0 \mathrm{~g}, 10.8 \mathrm{mmol})\) and the mixture was heated at \(80-90^{\circ} \mathrm{C}\) for 4 hours. After the same work-up as noted above, recrystallization of the crude crystals from water gave the dihydrazino derivative \(7(1.40 \mathrm{~g}\), \(72 \%\) ).

\section*{4,6-Bis(arylmethylidenehydrazino)-1 H -pyrazolo[3,4- \(d\) ]pyrimidines 8b-d, f. General procedure}

A mixture of the dihydrazino derivative \(7(0.60 \mathrm{~g}, 3.33 \mathrm{mmol})\) and an appropriate aldehyde ( 9.99 mmol ) in DMF ( \(20 \mathrm{~cm}^{3}\) ) was stirred at room temperature for 10 hours. After the reaction was complete, the solution was evaporated under reduced pressure and the residue was triturated with EtOH to give crystals, which were collected by filtration and recrystallized from a mixture of EtOH and DMF to afford the corresponding bishydrazones \(\mathbf{8 b}-\mathbf{d}, \mathbf{f}\) as shown in Tables 1 and 2.

\section*{4-Carbamoylhydrazino-6-chloro-1 H -pyrazolo[3,4- \(d\) ]pyrimidine 9}

A mixture of the hydrazinopyrazolopyrimidine \(2(0.5 \mathrm{~g}, 2.71\) mmol ) and urea ( \(0.65 \mathrm{~g}, 10.8 \mathrm{mmol}\) ) in 2-ethoxyethanol ( 25 \(\mathrm{cm}^{3}\) ) was heated under reflux for 5 hours. After the reaction was complete, the solution was evaporated under reduced pressure to afford a solid. The solid was collected by filtration, washed with water and recrystallized from water to afford the carbamoylhydrazino derivative \(9(0.37 \mathrm{~g}, 60 \%)\) as colourless powdery crystals, \(\mathrm{mp}>300^{\circ} \mathrm{C}\) (Found: C, 31.1; H, 2.9; N, 43.0. \(\mathrm{C}_{6} \mathrm{H}_{6}{ }^{-}\) \(\mathrm{ClN}_{7} \mathrm{O} \cdot 1 / 7 \mathrm{H}_{2} \mathrm{O}\) requires C, \(31.3 ; \mathrm{H}, 2.75 ; \mathrm{N}, 42.6 \%\) ); \(R_{\mathrm{f}}\) (B)

Table 4 IR and \({ }^{1} \mathrm{H}\) NMR spectroscopic data for the compounds \(\mathbf{1 1 b}, \mathbf{e}-\mathbf{r}\)
\begin{tabular}{|c|c|c|}
\hline Compound & \(v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}\) & \(\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; \mathrm{Me}_{4} \mathrm{Si}\right]\) \\
\hline 11b & \[
\begin{aligned}
& 3175,3130,3070(\mathrm{NH}) ; \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 2.01\left(3 \mathrm{H}, \mathrm{~d}, J 5.4, \mathrm{CHCH}_{3}\right), 7.69\left(1 \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{CHCH}_{3}\right), 8.35(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 10.40(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), \\
& 10.80(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 7-\mathrm{NH}), 12.85(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})
\end{aligned}
\] \\
\hline 11e & \[
\begin{aligned}
& 3175,3135,3070(\mathrm{NH}) ; \\
& 1710(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(0.86\left(3 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 1.29\left(8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 1.44-1.66\) \(\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 2.24-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 8.05(1 \mathrm{H}, \mathrm{t}, J 5.4\), \(\left.\mathrm{CHCH} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 8.28(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 10.22(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 10.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{NH}), 12.95\) ( \(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}\) ) \\
\hline 11f & \[
\begin{aligned}
& 3175,3135,3070(\mathrm{NH}) ; \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(1.28\left(10 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.44-1.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5}-\right.\) \(\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.90-2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.22-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}-\right.\) \(\left.\mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.86-5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.64-5.90(1 \mathrm{H}, \mathrm{m}\), \(\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.60-7.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 8.28(1 \mathrm{H}, \mathrm{s}\), \(3-\mathrm{H}), 10.28(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 10.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{NH}), 12.92(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline 11g & \[
\begin{aligned}
& 3200,3120,3080(\mathrm{NH}) ; \\
& 1680(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(7.40-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-m, p \mathrm{H}), 7.80-7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-o \mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar})\), \(10.40(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.01(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.10(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline 11h & \[
\begin{aligned}
& 3180,3140,3070(\mathrm{NH}) \text {; } \\
& 1680(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 7.30\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 9.0, \mathrm{Ar}-m \mathrm{H}\right), 7.30\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{~F}} 5.8, \mathrm{Ar}-o \mathrm{H}\right), 8.40(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), \\
& 8.45(1 \mathrm{H}, \mathrm{~s}, \mathrm{CH}-\mathrm{Ar}), 10.40(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.00(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.09(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})
\end{aligned}
\] \\
\hline \(11 i^{a}\) & \[
\begin{aligned}
& 3200,3120,3080(\mathrm{NH}) \text {; } \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & 7.33-7.60 ( \(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\) and \(\left.5^{\prime}-\mathrm{H}\right), 8.12-8.28\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 8.48(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.72(1 \mathrm{H}, \mathrm{s}\), CH-Ar), \(10.35(1 \mathrm{H}, \mathrm{br}\) s, 4-NH), \(11.10(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.40(1 \mathrm{H}\), br, 1-NH) \\
\hline 11j & \[
\begin{aligned}
& 3170,3140,3060(\mathrm{NH}) \text {; } \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(7.40-7.54\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.\) and \(\left.5^{\prime}-\mathrm{H}\right), 7.80-7.92\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.\) and \(\left.6^{\prime}-\mathrm{H}\right), 8.40(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.43(1 \mathrm{H}\), s, CH-Ar), \(10.50(1 \mathrm{H}\), br s, \(4-\mathrm{NH}), 11.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 13.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{NH})\) \\
\hline 11k & \[
\begin{aligned}
& 3170,3140,3070(\mathrm{NH}) \text {; } \\
& 1680(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
7.48(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-\mathrm{mH}), 7.87(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}) \text {, }
\]
\[
10.50(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.00(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.14(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})
\] \\
\hline 111 & \[
\begin{aligned}
& 3170,3140,3060(\mathrm{NH}) \text {; } \\
& 1685(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 7.66(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-m \mathrm{H}), 7.80(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-\mathrm{oH}), 8.38(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 9.44(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}) \text {, } \\
& 10.50(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.00(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 7-\mathrm{NH}), 13.11(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})
\end{aligned}
\] \\
\hline 11m & \[
\begin{aligned}
& 3170,3140,3060(\mathrm{NH}) ; \\
& 1685(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.28(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}-m \mathrm{H}), 7.72(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}-o \mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.44\) ( \(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar}\) ), \(10.45(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.00(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.10(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline \(11{ }^{\text {a }}\) & \[
\begin{aligned}
& 3180,3140,3080(\mathrm{NH}) ; \\
& 1680(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
3.80\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 6.74(2 \mathrm{H}, \mathrm{~d}, J 8.5, \mathrm{Ar}-m \mathrm{H}), 7.58(2 \mathrm{H}, \mathrm{~d}, J 8.5, \mathrm{Ar}-o \mathrm{H}), 7.94(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 7.99
\]
\[
(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}), 10.06(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 4-\mathrm{NH}), 10.92(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 7-\mathrm{NH}), 12.90(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 1-\mathrm{NH})
\] \\
\hline 110 & \[
\begin{aligned}
& 3180,3140,3070(\mathrm{NH}) \text {; } \\
& 1655(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(6.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.00\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}} 8.2,5^{\prime}-\mathrm{H}\right), 7.27\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}} 8.2, J_{2^{\prime}, 6^{\prime}} 1.6,6^{\prime}-\mathrm{H}\right), 7.45(1 \mathrm{H}\), \(\left.\mathrm{d}, J_{2^{\prime}, 6^{\prime}} 1.6,2^{\prime}-\mathrm{H}\right), 8.30(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar}), 10.35(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}\), 7-NH), 13.04 ( \(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH}\) ) \\
\hline \(11 \mathbf{p}^{a}\) & \[
\begin{aligned}
& 3165,3120,3050(\mathrm{NH}) ; \\
& 1650,1630(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(8.00(4 \mathrm{H}, \mathrm{br}, \mathrm{Ar}-\mathrm{H}), 8.50(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}\) and CH-Ar), \(11.25(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.95(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})\), \(12.35(1 \mathrm{H}, \mathrm{br}, \mathrm{COOH}), 13.55(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline 11q & \[
\begin{aligned}
& 3160,3140,3050(\mathrm{NH}) \text {; } \\
& 1640(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(6.84(2 \mathrm{H}, \mathrm{d}, J 8.4, \operatorname{Ar}-m \mathrm{H}), 7.65(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{Ar}-\mathrm{oH}), 8.26(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{Ar})\), \(9.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 10.86(1 \mathrm{H}\), br s, \(4-\mathrm{NH}), 11.02(1 \mathrm{H}, \mathrm{br}\) s, \(7-\mathrm{NH}), 12.90(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline 11r & \[
\begin{aligned}
& 3165,3120,3080(\mathrm{NH}) ; \\
& 1690(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
8.10(1 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-o \mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 8.50(1 \mathrm{H}, \mathrm{~s}, 3-\mathrm{H}), 8.52(1 \mathrm{H}, \mathrm{~s}, \mathrm{C} H-\mathrm{Ar}),
\] \(10.65(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{NH}), 11.11(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}), 13.21(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{NH})\) \\
\hline \multicolumn{3}{|l|}{\({ }^{\text {a }}\) This compound was measured at 60 MHz .} \\
\hline
\end{tabular}
\(0.70 ; v_{\text {max }} / \mathrm{cm}^{-1} 3410\) and \(3360\left(\mathrm{NH}_{2}\right), 3200,3100\) and 3040 \((\mathrm{NH}), 1675(\mathrm{C}=\mathrm{O})\) and \(\delta_{\max } / \mathrm{cm}^{-1} 1675\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}[200 \mathrm{MHz}\); \(\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.25\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.94(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.66\) and 10.00 (each 1 H , each br s, \(2 \times \mathrm{NH}\) ) and \(13.67(1 \mathrm{H}\), br s, \(1-\) \(\mathrm{NH}) ; \mathrm{m} / \mathrm{z}\) (FAB, glycerol matrix) \(228\left(\mathrm{MH}^{+}\right)\)and 230 \(\left(\mathrm{MH}^{+}+2\right)\).

\section*{3-Amino-7 H -pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-one 10}
(1) The reaction mixture in the same reaction and under the same conditions as in the above preparation for 9 was heated under reflux for 36 hours. After the same work-up as noted above, recrystallization of the crude crystals from water gave the pyrazolotriazolopyrimidine \(10(0.15 \mathrm{~g}, 29 \%)\) as colourless powdery crystals, \(\mathrm{mp}>300^{\circ} \mathrm{C}\) (Found: C, 37.1 ; H, 3.1; N, 49.9. \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{7} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) requires \(\mathrm{C}, 36.8 ; \mathrm{H}, 2.8 ; \mathrm{N}, 50.1 \%\) ); \(R_{\mathrm{f}}\) (A) \(0.57 ; v_{\max } / \mathrm{cm}^{-1} 3370\) and \(3260\left(\mathrm{NH}_{2}\right), 3180\) and \(3100(\mathrm{NH})\), \(1720(\mathrm{C}=\mathrm{O})\) and \(\delta_{\max } / \mathrm{cm}^{-1} 1685\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}} \quad[200 \mathrm{MHz}\); \(\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.83(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 7.94\left(2 \mathrm{H}, \mathrm{br}\right.\) s, \(\left.\mathrm{NH}_{2}\right), 12.27(1 \mathrm{H}\), br s, \(6-\mathrm{NH}\) ) and \(13.10(1 \mathrm{H}\), br s, 7-NH); \(m / z\) (FAB, glycerol matrix) \(192\left(\mathrm{MH}^{+}\right)\).
(2) A mixture of the pyrazolopyrimidine \(9(0.2 \mathrm{~g}, 0.88 \mathrm{mmol})\) and urea \((0.16 \mathrm{~g}, 2.66 \mathrm{mmol})\) in 2-ethoxyethanol \(\left(10 \mathrm{~cm}^{3}\right)\) was heated under reflux for 10 hours. After the same work-up as noted above, recrystallization of the crude crystals from water gave the pyrazolotriazolopyrimidine 10 ( \(30 \mathrm{mg}, 18 \%\) ).

\section*{4-Alkylidenehydrazino- and 4-arylmethylidenehydrazino-1 H-pyrazolo[3,4-d]pyrimidin-6(7H)-ones 11b, e-r. General procedure}

A mixture of the hydrazinopyrazolopyrimidine \(6(1.0 \mathrm{~g}, 6.02\)
\(\mathrm{mmol})\) and an appropriate alkyl aldehyde or aryl aldehyde (9.03 mmol ) in DMF ( \(50 \mathrm{~cm}^{3}\) ) was stirred at room temperature or \(40^{\circ} \mathrm{C}\) for 10 hours. After the reaction was complete, the solution was evaporated under reduced pressure and the residue was triturated with EtOH or AcOEt to give crystals, which were collected by filtration and recrystallized from an appropriate solvent to afford the corresponding hydrazones 11b, e-r as shown in Tables 3 and 4.

\section*{7H-Pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidin-5(6H)-one 12a and its 3 -substituted derivatives 12b-s. General procedure}
(1) Method A: A mixture of an appropriate 4-alkylidene-hydrazino- or 4-arylmethylidenehydrazino-1 H -pyrazolo[3,4- \(d\) ]-pyrimidin- \(6(7 H)\)-one \(\mathbf{1 1 b}\), e-r \((2.0 \mathrm{mmol})\) with \(70 \%\) nitric acid \(\left(0.22 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}\right)\) in DMF \(\left(30-50 \mathrm{~cm}^{3}\right)\) was heated at \(100^{\circ} \mathrm{C}\) for \(1-9\) hours. After the reaction was complete, the precipitated crystals were collected by filtration and combined with further material obtained by concentration of the filtrate under reduced pressure. The crystals were recrystallized from an appropriate solvent to afford the corresponding pyrazolotriazolopyrimidines \(\mathbf{1 2 b}, \mathbf{e}-\mathbf{p}, \mathbf{r}, \mathbf{s}\) as shown in Tables 5 and 6.
(2) Method B: A mixture of an appropriate 4-alkylidene-hydrazino- or 4-arylmethylidenehydrazino-1 \(H\)-pyrazolo[3,4- \(d\) ]-pyrimidin- \(6(7 H)\)-one \(\mathbf{1 1 e}, \mathbf{g}, \mathbf{h}, \mathbf{k}, \mathbf{m}-\mathbf{o}, \mathbf{q}(2.0 \mathrm{mmol})\) with DEAD ( \(0.35 \mathrm{~g}, 2.0 \mathrm{mmol}\) ) in DMF \(\left(50 \mathrm{~cm}^{3}\right)\) was heated under reflux. After heating for several hours, further DEAD (2.0 mmol amounts; total 3-7 equiv.) was added to the heated solution at hourly intervals until the hydrazone \(\mathbf{1 1}\) disappeared. After the reaction was complete, the solution was evaporated under reduced pressure to leave a solid, which was purified by

Table 5 Preparative, physical and analytical data for the compounds 12a-s
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound (Formula)} & \multicolumn{3}{|l|}{Reaction conditions \({ }^{\text {a }}\)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Yield }^{a} \\
& (\%)
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\mathrm{Mp} /{ }^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Recrystn. solvent \({ }^{b}\) \\
( \(R_{\mathrm{f}}\), solvent system \({ }^{c}\) )
\end{tabular}} & \multicolumn{3}{|l|}{Found (\%) (Required)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& m / z \\
& \mathrm{MH}^{+}
\end{aligned}
\]} \\
\hline & Method & Temp/ \({ }^{\circ} \mathrm{C}\) & Time/h & & & & C & H & N & \\
\hline 12a & (C) & r.t. & 1 & 66 & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DMF } \\
& (0.32, \mathrm{~A})
\end{aligned}
\]} & 39.9 & 2.7 & 46.5 & \multirow[t]{2}{*}{177} \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & (D) & 100 & 1 & 65 & & & (39.9) & (2.5) & (46.5) & \\
\hline 12b & (A) & 100 & 2.5 & 64 & \multirow[t]{3}{*}{> 300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.38, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
43.5 \\
(43.4)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
3.5 \\
(3.3)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
43.7 \\
(43.4)
\end{gathered}
\]} & \multirow[t]{3}{*}{191} \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\)} & (C) & r.t & 1 & 83 & & & & & & \\
\hline & (D) & 100 & 1 & 55 & & & & & & \\
\hline 12c & \multirow[t]{2}{*}{(D)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{54} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.45, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
46.8 \\
(47.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
4.2 \\
(3.95)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
41.4 \\
(41.2)
\end{gathered}
\]} & \multirow[t]{2}{*}{205} \\
\hline \(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}\) & & & & & & & & & & \\
\hline 12d & \multirow[t]{2}{*}{(D)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{55} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.55, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
51.1 \\
(50.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
5.5 \\
(5.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
36.0 \\
(35.6)
\end{gathered}
\]} & \multirow[t]{2}{*}{233} \\
\hline \(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline 12e & (A) & 100 & 3 & 77 & \multirow[t]{3}{*}{>300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.64, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
55.7 \\
(56.0)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
6.7 \\
(6.7)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
30.2 \\
(30.1)
\end{gathered}
\]} & \multirow[t]{3}{*}{275} \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\)} & (B) & reflux & 7 & 60 & & & & & & \\
\hline & (E) & 100 & 1 & 75 & & & & & & \\
\hline 12 f & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{2.5} & \multirow[t]{2}{*}{67} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.34, \text { B) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
60.3 \\
(60.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
7.35 \\
(7.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 26.3 \\
& (26.35)
\end{aligned}
\]} & \multirow[t]{2}{*}{315} \\
\hline \(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline 12g & (A) & 100 & 1 & 91 & \multirow[t]{3}{*}{>300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.60, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
55.9 \\
(56.1)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
3.45 \\
(3.3)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
32.75 \\
(32.7)
\end{array}
\]} & \multirow[t]{3}{*}{253} \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O} / 1 / 4 \mathrm{H}_{2} \mathrm{O}\)} & (B) & reflux & 5 & 60 & & & & & & \\
\hline & (E) & 100 & 1 & 85 & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 12h } \\
& \mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FN}_{6} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]} & (A) & 100 & 1 & 91 & \multirow[t]{3}{*}{>300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.62, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
52.6 \\
(52.5)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 2.9 \\
& (2.75)
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
30.65 \\
(30.6)
\end{array}
\]} & \multirow[t]{3}{*}{271} \\
\hline & (B) & reflux & 8 & 65 & & & & & & \\
\hline & (E) & 100 & 3 & 72 & & & & & & \\
\hline \[
12 i
\] & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{70} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.63, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
50.0 \\
(50.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.8 \\
(2.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
28.9 \\
(29.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{287/289} \\
\hline \[
\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{6} \mathrm{O}
\] & & & & & & & & & & \\
\hline 12j & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{76} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.64, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
49.9 \\
(49.65)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.8 \\
(2.6)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 29.2 \\
& (28.95)
\end{aligned}
\]} & \multirow[t]{2}{*}{287/289} \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathbf{1 2 k} \\
& \mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]} & (A) & 100 & 2 & 90 & \multirow[t]{3}{*}{> 300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.63, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 49.7 \\
& (49.65)
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
2.8 \\
(2.6)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 29.2 \\
& (28.95)
\end{aligned}
\]} & \multirow[t]{3}{*}{287/289} \\
\hline & (B) & reflux & 8 & 67 & & & & & & \\
\hline & (E) & 100 & 1 & 71 & & & & & & \\
\hline 121 & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{74} & \multirow[t]{2}{*}{> 300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.64, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
43.2 \\
(43.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.5 \\
(2.2)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
24.9 \\
(25.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{331/333} \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrN}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathbf{1 2 m} \\
& \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]} & (A) & 100 & 9 & 60 & \multirow[t]{3}{*}{>300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.67, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
58.0 \\
(57.9)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
4.0 \\
(3.9)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
31.3 \\
(31.1)
\end{gathered}
\]} & \multirow[t]{3}{*}{267} \\
\hline & (B) & reflux & 9 & 54 & & & & & & \\
\hline & (E) & 100 & 3 & 67 & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 12n } \\
& \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]} & (A) & 100 & 3 & 88 & \multirow[t]{3}{*}{>300} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { water-DMF } \\
& (0.60, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 54.5 \\
& (54.45)
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
3.9 \\
(3.7)
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
29.3 \\
(29.3)
\end{gathered}
\]} & \multirow[t]{3}{*}{283} \\
\hline & (B) & reflux & 9 & 57 & & & & & & \\
\hline & (E) & 100 & 3 & 61 & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{1 2 0} \\
& \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
(A) \\
(B)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100 \\
& \text { reflux }
\end{aligned}
\]} & \multirow[t]{2}{*}{1
9} & \multirow[t]{2}{*}{81
55} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.62, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
52.2 \\
(51.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
3.1 \\
(2.85)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
28.0 \\
(27.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{297} \\
\hline & & & & & & & & & & \\
\hline 12p & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{1.5} & \multirow[t]{2}{*}{69} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.64, \mathrm{C})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
51.8 \\
(51.7)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
3.2 \\
(2.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
27.6 \\
(27.8)
\end{gathered}
\]} & \multirow[t]{2}{*}{297} \\
\hline \[
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}
\] & & & & & & & & & & \\
\hline 12 q & \multirow[t]{2}{*}{(B)} & \multirow[t]{2}{*}{reflux} & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{50} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.51, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 52.8 \\
& (52.85)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.9 \\
(3.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
31.0 \\
(30.8)
\end{gathered}
\]} & \multirow[t]{2}{*}{269} \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline 12r & \multirow[t]{2}{*}{\[
\begin{aligned}
& (A) \\
& (E)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\]} & \multirow[t]{2}{*}{5
5} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\]} & \multirow[t]{2}{*}{>300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EtOH-DMF } \\
& (0.60, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
48.1 \\
(47.8)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.8 \\
(2.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
32.2 \\
(32.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{298} \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline 12s & \multirow[t]{2}{*}{(A)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{52} & \multirow[t]{2}{*}{\[
>300
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DMF } \\
& (0.46, \mathrm{~A})
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
45.4 \\
(45.4)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2.6 \\
(2.4)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
30.6 \\
(30.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{314} \\
\hline \(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\) & & & & & & & & & & \\
\hline
\end{tabular}
\({ }^{a}\) The reaction conditions and yields depend on the particular method. \({ }^{b}\) All compounds \(\mathbf{1 2}\) were obtained as colourless powdery crystals except for \(\mathbf{1 2 b}, \mathbf{h}, \mathbf{k}, \mathbf{l}\), (colourless needles) and 12r, \(\mathbf{s}\) (yellow powder). \({ }^{c}\) Solvent systems: (A) AcOEt-EtOH (4:1 v/v), (B) AcOEt-EtOH (9:1 v/v), (C) AcOEt-\(n\)-hexane-AcOH (8:4:1 v/v).
column chromatography on silica gel using AcOEt as eluent and recrystallized from an appropriate solvent to give the corresponding pyrazolotriazolopyrimidines \(\mathbf{1 2 e}, \mathbf{g}, \mathbf{h}, \mathbf{k}, \mathbf{m}-\mathbf{o}, \mathbf{q}\) as shown in Tables 5 and 6.
(3) Method C: A mixture of the hydrazinopyrazolopyrimid-
ine \(6(0.60 \mathrm{~g}, 3.6 \mathrm{mmol})\) with an appropriate triethyl orthoester ( 18.0 mmol ) in trifluoroacetic acid \(\left(9 \mathrm{~cm}^{3}\right)\) was stirred at room temperature for 1 hour. After the reaction was complete, the precipitated crystals were collected by filtration and recrystallized from an appropriate solvent to afford the corre-

Table 6 IR and \({ }^{1} \mathrm{H}\) NMR spectroscopic data for the compounds 12a-s
\begin{tabular}{|c|c|c|}
\hline Compound & \(v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}\) & \(\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; \mathrm{Me}_{4} \mathrm{Si}\right]\) \\
\hline 12a & \[
\begin{aligned}
& 3120,3030(\mathrm{NH}) \text {; } \\
& 1740(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(8.34(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 8.62(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 12.58\) ( \(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}), 13.60\) ( \(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{NH})\) \\
\hline 12b & \[
\begin{aligned}
& 3110,3050(\mathrm{NH}) \text {; } \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & 2.40 ( \(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\) ), \(8.54(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}), 13.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{NH})\) \\
\hline 12c & \[
\begin{aligned}
& 3100,3060(\mathrm{NH}) \text {; } \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.77\left(2 \mathrm{H}, \mathrm{q}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.57(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.43(1 \mathrm{H}, \mathrm{br}\) s, \(6-\mathrm{NH})\), \(13.55(1 \mathrm{H}, \mathrm{br}\) s, 7-NH) \\
\hline 12d & \[
\begin{aligned}
& 3090,3060(\mathrm{NH}) \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(0.92\left(3 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36\left(2 \mathrm{H}\right.\), sextet, \(\left.J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\) ) \(1.72(2 \mathrm{H}\), quintet, \(J 7.6\) \(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) ), \(2.74\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.57(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH})\), \(13.55(1 \mathrm{H}, \mathrm{br}\) s, \(7-\mathrm{NH}\) ) \\
\hline \(12 \mathrm{e}^{a}\) & \[
\begin{aligned}
& 3110,3070(\mathrm{NH}) ; \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(0.86\left(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 1.30\left(8 \mathrm{H}\right.\), br s, \(\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 1.50-1.80(2 \mathrm{H}, \mathrm{m}\) \(\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 2.50-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CH}_{3}\right), 8.53(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH})\), \(13.50(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})\) \\
\hline 12 f & \[
\begin{aligned}
& 3150,3070(\mathrm{NH}) ; \\
& 1710(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(1.28\left(10 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.62-1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.92-\) \(2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.87-5.04\) \(\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.66-5.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 8.57(1 \mathrm{H}, \mathrm{s}\), \(9-\mathrm{H}), 12.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}), 13.55(1 \mathrm{H}, \mathrm{br}\) s, \(7-\mathrm{NH})\) \\
\hline \(12 \mathrm{~g}{ }^{\text {a }}\) & \[
\begin{aligned}
& 3150,3050(\mathrm{NH}) ; \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 7.40-7.70(3 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}-m, p \mathrm{H}), 7.90-8.35(2 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}-o \mathrm{H}), 8.68(1 \mathrm{H}, \mathrm{~s}, 9-\mathrm{H}), 12.60(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}) \text {, } \\
& 13.60(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})
\end{aligned}
\] \\
\hline \(12 h^{a}\) & \[
\begin{aligned}
& 3110,3090(\mathrm{NH}) \text {; } \\
& 1710(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(7.37\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{F}} 9.1, \mathrm{Ar}-m \mathrm{H}\right), 8.22\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}, \mathrm{H}} 8.8, J_{\mathrm{H}, \mathrm{F}} 5.9, \mathrm{Ar}-\mathrm{oH}\right), 8.66(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.59\) ( 1 H , br s, \(6-\mathrm{NH}\) ), \(13.65(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})\) \\
\hline 12i & \[
\begin{aligned}
& 3150,3070(\mathrm{NH}) ; \\
& 1710(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(7.44-7.78\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.\) and \(\left.5^{\prime}-\mathrm{H}\right), 7.95-8.09\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 8.69(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.67(1 \mathrm{H}, \mathrm{br}\) s, 6-NH), 13.58 ( \(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}\) ) \\
\hline \(12 \mathrm{j}^{a}\) & \[
\begin{aligned}
& 3150,3100(\mathrm{NH}) \text {; } \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(7.54-7.63\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.\) and \(\left.5^{\prime}-\mathrm{H}\right), 7.95-8.25\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.\) and \(\left.6^{\prime}-\mathrm{H}\right), 8.67(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}\), 6-NH), \(13.60(1 \mathrm{H}\), br s, 7-NH) \\
\hline 12k & \[
\begin{aligned}
& 3160,3100(\mathrm{NH}) ; \\
& 1700(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
7.62(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-m \mathrm{H}), 8.17(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{Ar}-o \mathrm{H}), 8.70(1 \mathrm{H}, \mathrm{~s}, 9-\mathrm{H}), 12.62(1 \mathrm{H}, \text { br s, } 6-\mathrm{NH}), 13.66
\]
\[
(1 \mathrm{H} \mathrm{br} \mathrm{~s}, 7-\mathrm{NH})
\] \\
\hline 121 & \[
\begin{aligned}
& 3150,3060(\mathrm{NH}) ; \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \begin{tabular}{l}
\(7.76(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ar}-m \mathrm{H}), 8.10(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ar}-o \mathrm{H}), 8.69(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}), 13.65\) \\
( \(1 \mathrm{H}, \mathrm{br}\) s, \(7-\mathrm{NH}\) )
\end{tabular} \\
\hline 12m & \[
\begin{aligned}
& 3180,3100(\mathrm{NH}) ; \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \begin{tabular}{l}
\(2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}-m \mathrm{H}), 8.05(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}-\mathrm{oH}), 8.66(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.54\) \\
( 1 H, br s, \(6-\mathrm{NH}), 13.61(1 \mathrm{H}\), br s, \(7-\mathrm{NH})\)
\end{tabular} \\
\hline \(12{ }^{\text {a }}\) & \[
\begin{aligned}
& 3160,3100(\mathrm{NH}) ; \\
& 1730(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 3.85\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 7.10(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 8.12(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-o \mathrm{H}), 8.64(1 \mathrm{H}, \mathrm{~s}, 9-\mathrm{H}), 12.60(1 \mathrm{H}, \\
& \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}), 13.50(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 3160,3050(\mathrm{NH}) \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 6.13\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.08\left(1 \mathrm{H}, \mathrm{~d}, J_{5^{\prime}, 6^{\prime}} 8.1,5^{\prime}-\mathrm{H}\right), 7.58\left(1 \mathrm{H}, \mathrm{~d}, J_{2^{\prime}, 6^{\prime}} 1.6,2^{\prime}-\mathrm{H}\right), 7.72\left(1 \mathrm{H}, \mathrm{~d}, J_{5^{\prime}, 6^{\prime}} 8.1, J_{2^{\prime}, 6^{\prime}}\right. \\
& \left.1.6,6^{\prime}-\mathrm{H}\right), 8.68(1 \mathrm{H}, \mathrm{~s}, 9-\mathrm{H}), 12.55\left(1^{\mathrm{H}} \mathrm{H}, \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}\right), 13.62(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 7-\mathrm{NH})
\end{aligned}
\] \\
\hline 12pa & \[
\begin{aligned}
& 3160,3090(\mathrm{NH}) ; \\
& 1700,1660(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \(8.10(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 8.32(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}-o \mathrm{H}), 8.69(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 12.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}), 13.50\) ( \(2 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH}\) and COOH ) \\
\hline 12q & \[
\begin{aligned}
& 3160,3050(\mathrm{NH}) \\
& 1718(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 6.90(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-m \mathrm{H}), 7.99(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{Ar}-\mathrm{oH}), 8.66(1 \mathrm{H}, \mathrm{~s}, 9-\mathrm{H}), 9.94(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}), 12.51(1 \mathrm{H} \text {, } \\
& \mathrm{br} \mathrm{~s}, 6-\mathrm{NH}), 13.60(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{NH})
\end{aligned}
\] \\
\hline \(12 r^{a}\) & \[
\begin{aligned}
& 3170,3100(\mathrm{NH}) \text {; } \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & 8.39 (4 H, br s, Ar-H), 8.69 (1 H, s, 9-H), 12.70 ( \(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH})\), 13.60 ( \(1 \mathrm{H}, \mathrm{br} 7-\mathrm{NH}\) ) \\
\hline 12s & \[
\begin{aligned}
& 3160,3080(\mathrm{NH}) \\
& 1720(\mathrm{C}=\mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& 7.31\left(1 \mathrm{H}, \mathrm{~d}, J_{5^{\prime}, 6^{\prime}} 8.8,5^{\prime}-\mathrm{H}\right), 8.28\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} 8.8 . J_{2^{\prime}, 6^{\prime}} 2.2,6^{\prime}-\mathrm{H}\right), 8.60\left(1 \mathrm{H}, \mathrm{~d}, J_{2^{\prime}, 6^{\prime}} 2.2,2^{\prime}-\mathrm{H}\right), 8.70(1 \mathrm{H}, \\
& \mathrm{s}, 9-\mathrm{H}), 11.59\left(1^{1} \mathrm{H}, \mathrm{~s}, \mathrm{OH}\right), 12.62(1 \mathrm{H}, \mathrm{br} \text {, } 6-\mathrm{NH}), 13.65(1 \mathrm{H}, \mathrm{br} \mathrm{~s}, 7-\mathrm{NH})
\end{aligned}
\] \\
\hline
\end{tabular}
sponding pyrazolotriazolopyrimidines \(\mathbf{1 2 a}, \mathbf{b}\) as shown in Tables 5 and 6.
(4) Method D: A mixture of the hydrazinopyrazolopyrimidine \(6(0.60 \mathrm{~g}, 3.6 \mathrm{mmol})\) with an appropriate triethyl or trimethyl orthoester ( 10.8 mmol ) in DMF ( \(30-40 \mathrm{~cm}^{3}\) ) was heated at \(100^{\circ} \mathrm{C}\) for 1 hour. After the reaction was complete, the solution was evaporated under reduced pressure and the residue was triturated with EtOH or AcOEt to give crystals, which were collected by filtration and recrystallized from an appropriate solvent to afford the corresponding pyrazolotriazolopyrimidines 12a-d as shown in Tables 5 and 6.
(5) Method E: A mixture of an appropriate 4-alkylidene-hydrazino- or 4-arylmethylidenehydrazino-6-chloro-1 H -pyrazolo \([3,4-d\) ]pyrimidine \(\mathbf{3 a - g}(2.0 \mathrm{mmol})\) with \(70 \%\) nitric acid \((0.9\) \(\left.\mathrm{cm}^{3}, 10.0 \mathrm{mmol}\right)\) in DMF (30-50 \(\mathrm{cm}^{3}\) ) was heated at \(100^{\circ} \mathrm{C}\) for \(1-5\) hours. After the reaction was complete, the precipitated crystals were collected by filtration and further crystals were obtained by concentration of the filtrate under reduced pressure. The combined crystals were recrystallized from an appropriate solvent to afford the corresponding pyrazolotriazolopyrimidines \(\mathbf{1 2 e}, \mathbf{g}, \mathbf{h}, \mathbf{k}, \mathbf{m}, \mathbf{n}, \mathbf{r}\) as shown in Tables 5 and 6 .

\section*{Xanthine oxidase assay}

All test compounds and allopurinol were dissolved in dimethyl sulfoxide (DMSO) and diluted with 50 mm sodium phosphate
buffer ( pH 7.4 ) for in vitro experiments. The final concentration of DMSO in the reaction solution was \(0.1 \%\).

Bovine milk xanthine oxidase ( XO ) \(\left(10 \mathrm{mU} \mathrm{ml}^{-1}\right)\) was incubated with \(100 \mu \mathrm{~m}\) xanthine in the presence and absence of the test compound \((0.003-10 \mu \mathrm{M})\) at \(25^{\circ} \mathrm{C}\) for 15 min . Uric acid formation was determined by absorbance at 292 nm using a Hitachi 228-A spectrophotometer, and the inhibition rate (\%) for the formation of uric acid and \(\mathrm{IC}_{50}\) values of the test compounds were determined. The inhibition rate ( \(I\) ) of the test compound at each concentration was calculated by eqn. (1),
\[
\begin{equation*}
I(\%)=100-\left[\left(D-D_{\mathrm{B}}\right) / T\right] \times 100 \tag{1}
\end{equation*}
\]
where \(T\) is the optical density of a solution of xanthine and XO, \(D\) is the optical density of a solution of test compound, xanthine and XO and \(D_{\mathrm{B}}\) is the optical density of a solution of test compound and XO.

The inhibitory activity of allopurinol against bovine milk xanthine oxidase was also examined as a positive control. Each experiment was repeated at least twice at different concentrations \((0.003-10 \mu \mathrm{M})\). The values of \(\mathrm{IC}_{50}\), i.e. the \(\mu_{\mathrm{M}}\) concentration of inhibitor necessary for \(50 \%\) inhibition, were determined from the dose-response curve from the relation of the logarithmic concentration ( \(\mu \mathrm{m}\) ) and the inhibition (\%).

Table 7 Inhibitory activities of the compounds \(\mathbf{2 , 3}, \mathbf{4}, \mathbf{6}, \mathbf{8}, 11\) and \(\mathbf{1 2}\) against bovine milk xanthine oxidase in comparison with allopurinol
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound No.} & \multicolumn{6}{|l|}{Inhibition (\%)} & \multirow[b]{2}{*}{\(\mathrm{IC}_{50} / \mu \mathrm{m}\)} \\
\hline & 10 & 3 & 1 & 0.3 & 0.1 & 0.03 & \\
\hline 2 & 21.4 & 11.8 & 8.3 & & & & \(>10\) \\
\hline 3b & 7.6 & & & & & & \(>10\) \\
\hline 3 c & 21.0 & 16.0 & 11.5 & & & & \(>10\) \\
\hline 3d & 12.0 & 9.5 & 9.4 & & & & \(>10\) \\
\hline 3 e & 14.2 & 13.8 & 10.8 & & & & \(>10\) \\
\hline 3 f & 41.0 & & & & & & \(>10\) \\
\hline \(4^{a}\) & 39.8 & & & & & & 22.1 \\
\hline 6 & 24.1 & & & & & & \(>10\) \\
\hline 8b & 7.2 & & & & & & \(>10\) \\
\hline 8 c & 16.3 & & & & & & \(>10\) \\
\hline 8d & 12.4 & & & & & & \(>10\) \\
\hline 8 f & 17.2 & & & & & & \(>10\) \\
\hline 11b & 58.6 & 45.0 & 34.8 & 15.8 & 6.9 & 6.2 & 4.670 \\
\hline 11e & 71.7 & 69.2 & 60.6 & 44.6 & 25.8 & 13.3 & 0.450 \\
\hline 11 f & 53.3 & 36.5 & 22.4 & 13.0 & 9.7 & 4.6 & 7.894 \\
\hline 11g & 75.6 & 73.0 & 66.3 & 49.8 & 29.9 & & 0.305 \\
\hline 11h & 68.5 & 69.9 & 63.6 & 47.0 & 29.7 & & 0.373 \\
\hline 11i & 68.9 & 69.6 & 68.5 & 64.4 & 53.8 & 36.3 & 0.077 \\
\hline 11j & 67.6 & 66.4 & 63.4 & 54.2 & 38.7 & 20.7 & 0.223 \\
\hline 11k & 66.1 & 65.6 & 62.9 & 53.8 & 39.5 & 22.7 & 0.224 \\
\hline \(111{ }^{\text {b }}\) & 45.1 & 44.2 & 42.1 & 49.6 & 40.1 & 23.9 & \(>10\) \\
\hline 11m & 68.9 & 66.5 & 63.8 & 52.8 & 37.0 & 18.6 & 0.247 \\
\hline 11n & 74.5 & 73.3 & 70.0 & 59.2 & 41.0 & & 0.172 \\
\hline 110 & 68.4 & 65.9 & 61.6 & 47.0 & 29.0 & 14.1 & 0.385 \\
\hline 11p & 68.1 & 65.2 & 60.3 & 46.8 & 29.3 & 14.8 & 0.399 \\
\hline 11q & 62.8 & 66.2 & 60.3 & 48.2 & 40.3 & 16.7 & 0.359 \\
\hline & 57.3 & 52.1 & 46.9 & 39.5 & 28.7 & 14.0 & 1.925 \\
\hline 12a & 69.2 & 67.5 & 65.2 & 56.6 & 41.8 & 23.9 & 0.184 \\
\hline 12b & 71.5 & 68.8 & 65.1 & 52.5 & 37.3 & 20.7 & 0.250 \\
\hline \(12 c^{c}\) & 57.0 & 55.2 & 52.0 & 42.2 & 28.8 & 17.8 & 0.782 \\
\hline \(12 \mathrm{~d}^{d}\) & 57.6 & 55.1 & 53.0 & 46.1 & 34.9 & 18.9 & 0.529 \\
\hline 12e & 69.8 & 69.1 & 67.9 & 62.8 & 54.4 & 40.2 & 0.069 \\
\hline 12 f & 66.8 & 65.0 & 63.4 & 59.6 & 48.4 & 32.0 & 0.117 \\
\hline 12g & 67.8 & 65.3 & 64.2 & 59.8 & 49.7 & 32.4 & 0.103 \\
\hline 12h & 69.5 & 68.8 & 67.7 & 64.6 & 56.7 & 39.6 & 0.062 \\
\hline 12i & 68.5 & 68.6 & 67.1 & 63.5 & 54.8 & 38.9 & 0.070 \\
\hline 12j & 68.9 & 69.6 & 68.8 & 66.7 & 61.3 & 47.4 & 0.038 \\
\hline \(12 \mathrm{k}^{e}\) & 72.3 & 70.6 & 70.3 & 68.3 & 62.9 & 49.3 & 0.032 \\
\hline \(121{ }^{f}\) & 70.1 & 66.4 & 67.4 & 63.9 & 60.4 & 48.9 & 0.034 \\
\hline \(12 \mathrm{~m}{ }^{\text {g }}\) & 72.2 & 70.7 & 70.0 & 67.0 & 60.9 & 46.0 & 0.041 \\
\hline 12n & 71.6 & 71.0 & 70.4 & 66.9 & 58.6 & 42.3 & 0.053 \\
\hline 120 & 70.2 & 69.6 & 68.6 & 66.6 & 61.0 & 46.3 & 0.041 \\
\hline & 69.0 & 67.1 & 65.7 & 60.6 & 50.2 & 34.3 & 0.098 \\
\hline 12q \({ }^{\text {h }}\) & 67.6 & 66.0 & 65.4 & 62.9 & 57.0 & 42.9 & 0.055 \\
\hline 12r & 69.8 & 68.2 & 68.7 & 64.4 & 57.5 & 39.6 & 0.060 \\
\hline 12s & 69.1 & 69.7 & 69.0 & 67.7 & 64.0 & 46.9 & 0.037 \\
\hline Allo \({ }^{i}\) & 38.2 & 19.9 & 9.9 & 4.6 & 3.2 & & 24.3 \\
\hline
\end{tabular}
\({ }^{a} 30 \mu \mathrm{M}: 53.9 \%, 100 \mu \mathrm{M}: 63.9 \% .^{b}\) This value is inaccurate because of insolubility in DMSO. \({ }^{c} 0.01 \mu \mathrm{M}: 12.6 \%\). \({ }^{d} 0.01 \mu \mathrm{M}: 9.6 \%\). \({ }^{e} 0.01 \mu \mathrm{M}: 30.4 \%, 0.003\) \(\mu \mathrm{M}, 16.4 \% .^{f} 0.01 \mu \mathrm{M}: 37.3 \% .^{g} 0.01 \mu \mathrm{M}: 28.2 \%, 0.003 \mu \mathrm{M}: 13.6 \% .^{h} 0.01 \mu \mathrm{M}: 29.0 \% .^{i}\) Allo: allopurinol.

\section*{Acknowledgements}

We are grateful to the SC-NMR Laboratory of Okayama University for 200 MHz proton NMR experiments. This work was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 09680570) from the Japan Society for the Promotion of Science.

\section*{References}

1 Part 2, T. Nagamatsu, H. Yamasaki, T. Fujita, K. Endo and H. Machida, J. Chem. Soc., Perkin Trans. 1, 1999, 3117.

2 R. W. Rundles, J. B. Wyngaarden, G. H. Hitchings, G. B. Elion and H. R. Silberman, Trans. Assoc. Am. Physicians, 1963, 76, 126.

3 T. F. Yü and A. B. Gutman, Am. J. Med., 1964, 37, 885.
4 J. R. Klinenberg, S. E. Goldfinger and J. E. Seegmiller, Ann. Intern. Med., 1965, 62, 639.
5 G. B. Elion, Ann. Rheumat. Dis., 1966, 25, 608.
6 G. B. Elion, S. Callahan, H. Nathan, S. Bieber, R. W. Rundles and G. H. Hitchings, Biochem. Pharmacol., 1963, 12, 85.

7 J. L. Young, R. B. Boswell and A. S. Nies, Arch. Intern Med., 1974, 134, 553.

8 K. R. Hande, R. M. Noone and W. J. Stone, Am. J. Med., 1984, 76, 47.

9 D. E. Duggan, R. M. Noll, J. E. Baer, F. C. Novello and J. J. Baldwin, J. Med. Chem., 1975, 18, 900.
10 R. L. Wortmann, A. S. Ridolfo, R. W. Lightfoot Jr. and I. H. Fox, J. Rheumatol., 1985, 12, 540.

11 A. Bindoli, M. Valente and L. Cavallini, Pharmacol. Res. Commun., 1985, 17, 831.
12 T. Spector, W. W. Hall, D. J. Porter, C. U. Lambe, D. J. Nelson and T. A. Krenitsky, Biochem. Pharmacol., 1989, 38, 4315.

13 S. Sato, K. Tatsumi and T. Takahashi, Purine and Pyrimidine Metabolism in Man VII, Part A: Chemotherapy, ATP Depletion and Gout, eds. R. A. Harkness, G. B. Elion and N. Zöllner, Plenum Press, New York, 1991, p. 135.
14 Y. Osada, M. Tsuchimoto, H. Fukushima, K. Takahashi, S. Kondo, M. Hasegawa and K. Komoriya, Eur. J. Pharmacol., 1993, 241, 183.

15 G. Biagi, I. Giorgi, O. Livi, V. Scartoni, I. Tonetti and L. Costantino, Farmaco, 1995, 50, 257.
16 T. Nagamatsu, Y. Watanabe, K. Endo and M. Imaizumi, PCT Int. Appl. WO 96 26,208/1996 (Chem. Abstr., 1996, 125, 247848j).
17 T. Nagamatsu, T. Abiru, Y. Watanabe and K. Endo, Jpn. Kokai Tokkyo Koho JP 07,242,694/1995 (Chem. Abstr., 1996, 124, 117896s).

18 T. Nagamatsu and T. Fujita, Chem. Commun., 1999, 1461.
19 G. A. Bhat and L. B. Townsend, J. Chem. Soc., Perkin Trans. 1, 1981 2387.

20 F. Gatta, M. Luciani and G. Palazzo, J. Heterocycl. Chem., 1989, 26, 613.

21 U. D. Treuner and H. Breuer, USP 4053 474, 1977 (Chem. Abstr., 1977, 88, 37826s), USP 4124 764, 1978 (Chem. Abstr., 1978, 90,

87508b) Ger. Offen. 2838 029, 1979 (Chem. Abstr., 1979, 91, 39492r).
22 F. Yoneda, Y. Sakuma, S. Mizumoto and R. Ito, J. Chem. Soc., Perkin Trans. 1, 1976, 1805.
23 R. K. Robins, J. Am. Chem. Soc., 1956, 78,784.
Paper a907673e```

